Временная функция сигнала имеет вид:
. (1.9)
У заданного сигнала , график этого сигнала изображен на рис. 1.7.
Прямое преобразование Фурье для этой функции имеет вид
. (1.10)
учетом коэффициентов получаем:
В/Гц. (1.11)
График амплитудного спектра U(w) изображен на рис. 1.8.
Спектр фаз можно определить применив функцию arg(х), получаем:
. (1.12)
График спектра фаз функции изображен на рис. 1.9.
Расчет полной энергии и ограничение практической ширины спектра осциллирующего сигнала
Полная энергия сигнала (1.9) в общем случае рассчитывается по (1.3). Применив табличный интеграл, имеем:
Ограничение практической ширины спектра сигнала по верхнему значению частоты wс осуществляется так же, как и для предыдущих сигналов.
Для определения граничной частоты в одной системе координат построим график W`, прямые полной энергии W=3.564318×10-6 Дж и части полной энергии W``=d×W=3.489467×10-6 Дж. Находим значение wс по графику, изображенному на рис. 1.10. Точка пересечения W` и W`` соответствует значению wс.
wс=6.1×104 рад/с.
В данном разделе определены энергии трех сигналов и с учетом коэффициента d, определяющего процент полной энергии, проведен расчет граничной частоты, на основании чего можно выбрать для последующих расчетов экспоненциальный сигнал, т.к. у данного сигнала самый узкий спектр и к каналу, по которому будет передаваться этот сигнал, предъявляются менее жесткие требования.
Автоматическая система управления
В настоящее время широко используются микропроцессорные устройства и системы. Их назначение и область применения очень велика. Так, различного рода микропроцессорные сист ...
Расчет линейной электрической цепи при гармоническом воздействии
Цель
курсовой работы состоит в практическом освоении методов расчета простых и
сложных электрических цепей при воздействии на них гармонических колебани ...
Преобразователь двоичного кода
Логические элементы (узлы) предназначены для выполнения различных
логических (функциональных) операций над дискретными сигналами при двоичном
коде их предст ...