Разделы сайта

Современные проблемы и направления развития микроэлектроники

Нано-технологии открывают практически неограниченные возможности построения как планарных, так и объемных структур, позволяющих создавать на подложке электронные элементы размерами порядка атомарных. Теоретически быстродействие таких элементов может составлять величину порядка и даже с, а высочайшая степень интеграции наноэлектронных структур позволяет реализовать запоминающие устройства со сверхвысокой плотностью записи информации порядка 10ю бит/, что на три порядка превосходит возможности современных лазерных дисков.

Однако повышение степени интеграции резко сужает область применения СБИС, так как они становятся слишком специализированными и поэтому изготавливаются ограниченными партиями, что экономически невыгодно. Выходом из положения являются разработка и производство базовых матричных кристаллов. Такой кристалл содержит большое число одинаковых топологических ячеек, образующих матрицу. Каждая ячейка содержит определенное число нескоммутированных элементов, подобранных таким образом, чтобы из них можно было сформировать несколько функциональных элементов (триггер, группу логических вентилей и т.д.). Выполняя металлическую разводку внутри топологических ячеек и соединяя их между собой, можно получать весьма сложные по устройству электронные блоки, отличающиеся функциональными возможностями. На основе одного базового матричного кристалла с помощью простой замены фотошаблонов металлизации можно реализовать большое число модификаций БИС.

Возможности микроэлектроники далеко не исчерпаны, а предрекаемый предел ее развития как научной и технологической дисциплины постоянно отодвигается во времени. Однако долгосрочные прогнозы в такой динамично развивающейся области, как микроэлектроника, - дело неблагодарное. И даже если такой предел будет, достигнут, это вовсе не означает, что прогресс в области электроники остановится. На смену полупроводниковой технике придут новые технологии, основанные на иных физических принципах. Возможно, это будет функциональная электроника, оптическая, квантовая или, наконец, биоэлектроника.

Перейти на страницу: 1 2 3 

Интересное из раздела

Cинтез инвертирующего усилителя
Операционные усилители в настоящее время находят широкое применение при разработке различных аналоговых и импульсных электронных устройств. Это связано с те ...

Шагающий аппарат
Одной из важных разновидностей роботов являются шагающие роботы, предназначенные для перемещения по труднопроходимой местности. В отличие от к ...

Однофазный инвертор напряжения
В данном курсовом проекте проектируется полупроводниковый преобразователь электрической энергии - автономный инвертор напряжения. Вначале преобразователи выпол ...