Находим остальные коэффициенты:
;
;
;
;
;
;
;
.
Полином по степеням х находится по формуле, в которой аппроксимирующий полином в отличие от аппроксимируемой функции обозначен как
:
,
где - ортогональные полиномы. Группируя коэффициенты по степеням х и собирая подобные члены, приходим к удобным выражениям для вычисления членов А0, А1х, А2х2, А3х3 и т.д. этого полинома:
;
;
;
;
;
;
.
В итоге полином по степеням х:
;
Рассматриваемый полином удовлетворяет требованиям формулы:
= 0 и х = 0 ;
Подставляем в формулу значение:
,
получаем истинный теоретический полином Во по степеням :
.
По найденному уравнению вычисляем и заносим в нижнюю графу таблицы 2 значения В0 в контрольных точках напряжения смещения .
Из сопоставления экспериментальных значений и теоретических В0 рисунку 2 видим, что совпадение очень хорошее. Абсолютная ошибка находится в пределах сотых долей, что характеризует пригодность результатов аппроксимации для дальнейшего гармонического анализа различных нелинейных явлений.
Анализ и синтез САУ методом корневого годографа
- Изучение системы автоматического регулирования (САР).
- Оценка качеств, характеристик САР
(устойчивости, ошибки, переходного процесса) по различн ...
Амплитудная модуляция
Исследование
различных видов модуляции необходимо для определения требуемых свойств каналов,
сокращения избыточности модулированных сигналов и улучшения исп ...
Расчет системы электропитания и ее элементов
Цель
работы: составить по заданным условиям задания один из вариантов системы
электропитания с расчетом и выбором ее элементов.
Электропитание
любой сис ...