Разделы сайта

НИОКР в области фазированных антенных решеток

ФАР для управления лазерными и оптическими лучами. Разработка антенной решетки, производящей электронное сканирование оптических и лазерных лучей, велась с середины 60-х годов. Несмотря на многие трудности и даже сомнения в принципиальной возможности ее реализации, такая решетка была создана. Ее конструкция представляет собой N столбцов и N строк жидкокриталлических фазовращателей, которые соответственно разнесены с интервалом в половину световой волны. Фазовращатели выполнены на двух жидкокристаллических пластинах, на одной стороне которых нанесен прозрачный проводящий слой заземления, а на другой методом фотолитографии сформированы соответственно N вертикальных и N горизонтальных полосок из прозрачного проводящего материала. Приложив напряжение между какой-либо проводящей полоской и заземляющим слоем, можно изменять значение диэлектрической постоянной жидкокристаллического фазовращателя, что, в свою очередь, изменяет скорость распространения проходящего через него лазерного или оптического сигнала. Пластина со столбцами фазовращателей производит сканирование луча в азимутальной плоскости, а пластина со строками - в угломестной. Фазовый градиент формируется путем ступенчатого изменения напряжения, подаваемого на жидкокристаллические столбцы и строки. Благодаря матричному управлению вместо традиционного поэлементного число фазовращателей и элементов управления снижено с N2 до 2N.

Сегнетоэлектрическая антенная решетка. Специалисты научно-исследовательской лаборатории ВМС США разработали недорогую фазированную антенную решетку СВЧ-диапазона с аналогичным матричным методом управления лучом, но вместо жидкокристаллических фазовращателей использовали сегнетоэлектрические. Диэлектрические постоянные столбцов и строк фазовращателей зависят от приложенного напряжения. При ступенчатом изменении напряжения формируется фазовый градиент, необходимый для управления лучом по азимуту и углу места. Конструктивно сегнетоэлектрическая антенная решетка состоит из двух линз. Первая линза, состоящая из столбцов сегнетоэлектрических фазовращателей, производит сканирование луча по азимуту. Вторая, повернутая относительно первой на 90о и состоящая из строк фазовращателей, сканирует луч по углу места. (Базовая конфигурация таких линз показана на рис. 3.) Для правильной работы сегнетоэлектрических линз необходимо, чтобы электрическое поле было линейно поляризовано и его вектор перпендикулярен проводящим пластинам. Таким образом, для линзы, сканирующей луч в азимутальном направлении, требуется сигнал с линейной горизонтальной поляризацией, а для линзы, сканирующей луч в угломестном направлении, - с линейной вертикальной. Поворот плоскости поляризации на 90о осуществляет среда, размещенная между двумя сегнетоэлектрическими линзами.

Плазменная антенна с электронным сканированием. Специалисты научно-исследовательской лаборатории ВМС США работают также над созданием принципиально новой антенной системы, в которой электронное управление лучами осуществляется с помощью плазменного отражателя. Исследования показывают, что плазма при достаточной плотности обладает способностью отражать электромагнитную энергию. Причем чем выше частота облучения, тем большую плотность должна иметь плазма. Концепция построения плазменной антенны показана на рис.4. Плазменный слой создается в вакуумной камере при газовом разряде между анодной пластиной и линейным катодом, который представляет собой линейку элементов определенного адреса на двухкоординатной сетке катода. Изменяя положение линейного катода, можно вращать плазменный слой и тем самым сканировать отраженный луч по азимуту. Сканирование луча по углу места производят изменением наклона плазменного отражателя путем регулирования магнитного поля катушек Гельмгольца. Последние размещены вокруг отражателя так, чтобы не блокировать СВЧ-сигнал. Положением линейного катода и значением магнитной индукции управляет компьютер. Согласно расчетам, точность установки луча в заданном направлении составляет 1-2о, чего, по мнению разработчиков, вполне достаточно. Время переориентации луча - около 10 мкс, однако предварительные испытания показывают, что оно может быть еще меньше. Для образования плазменного слоя в камере достаточно поддерживать вакуум примерно 13 Па. Магнитная индукция должна составлять около 0,02 Тл, ток - порядка 2 А и напряжение - 20 кВ. В 1996 году был сформирован плазменный отражатель размерами 60х60х1 см. Уровень боковых лепестков при этом составил примерно -20 дБ. В 1997 году планировалось создать отражатель диаметром около двух метров. В числе достоинств плазменных антенн - возможность быстрой и точной установки луча, что позволяет одновременно выполнять операции поиска и сопровождения групповых целей, а также формировать разные диаграммы направленности. Кроме того, такие антенны обладают широкой полосой частот, в результате чего один и тот же плазменный отражатель можно использовать с разными облучателями

Перейти на страницу: 1 2 3 4 5

Интересное из раздела

Преобразователь двоичного кода
Логические элементы (узлы) предназначены для выполнения различных логических (функциональных) операций над дискретными сигналами при двоичном коде их предст ...

Программируемый формирователь последовательности импульсов с цифровой индикацией количества импульсов
Проектируемое устройство в готовом виде представляет собой отдельный прибор, основной функцией которого является формирование последовательности импульсов заданной частот ...

Проектирование автомата подачи звонков
Разработанный автомат подачи звонков удовлетворяет всем требованиям, предъявленным в задании. Настройка автомата производится с помощью трех кнопок: «вверх» ...