Разделы сайта

Описание схемы

Рисунок 6 - Схема блок прототипа

На рис. 6 показана блок схема прототипа. Она содержит ядро АЦП, логику цифровой корректировки и тактовый генератор. Для увеличения PSSR (коэффициент реакции питающего напряжения) и уменьшения частых гармонических искажений, все аналоговые сигналы являются полностью дифференциальными. Предположим, что все этапы идентичны с целью уменьшения времени проектирования. Самая основная архитектурная характеристика - индивидуальное разрешение этапа. Она определяет количество этапов, требуемых для получения разрешения 10-b, и устанавливает значение межкаскадного усиления. Выбор оптимального разрешения этапа определяется двумя факторами: скоростью преобразования и линейностью. Чтобы охватывать приложения со скоростной передачей видео, требуется скорость преобразования 20 Msamples/s. Это соответствует периоду преобразования 50 нс, который разделен на две неперекрывающиеся фазы равной продолжительности тактовым генератором. В результате, время урегулирования операционного усилителя должно быть менее 25 нс. Кроме того, коэффициент усиления при разомкнутой цепи операционного усилителя должен быть более 2000, чтобы получить линейность 10-b в АЦП. Для достижения этих требований, должно быть выбрано минимальное разрешение этапа, потому что при этом будет минимизировано требуемое межкаскадное усиление, которое, в свою очередь, максимизирует пропускную способность, так как в любых технологиях усиление пропускной способности ограничено. В тоже время, однако, должна присутствовать некоторая избыточность для устранения эффекта нелинейности ADSC (АЦП низкого разрешения) и межкаскадное смещение при полной линейности. Чтобы уравновесить эти проблемы, здесь было выбрано разрешение 1.5 b; это значит, что на каждом этапе есть три возможных вывода. При межкаскадном усилении, равном двум, каждый этап привносит 1 b к полному разрешению. Остальные ½ b на каждом этапе - избыточные. Логика цифровой корректировки устраняет эту избыточность и производит вывод разрешением 10 b.

Рисунок 7 - Схема умножающего ЦАП

Каждый этап содержит один операционный усилитель и два компаратора, кроме последнего этапа, на котором используется три компаратора. Так как всего 9 этапов, в целом используется 9 операционных усилителей и 19 компараторов. На рис. 7 каждый базовый этап содержит АЦП низкого разрешения и ЦАП, которые совместно используют общую цепочку резисторов. Хотя эта конфигурация и уменьшает площадь, она также увеличивает требования к резисторам. Здесь вместо этого используются ЦАП на конденсаторах. В результате, резисторы только определяют уровни АЦП низкого разрешения. Поскольку избыточность и цифровая корректировка делает линейность преобразования нечувствительной к этим уровням, то линейность преобразования больше не зависит от соответствующих резисторов, а только от соответствующих конденсаторов и операционного усилителя. ЦАП, вычитающее устройство и SHA (усилитель выборки и запоминания) совместно используют общий массив конденсаторов, и их функции объединены в умножающийся ЦАП. Это ключевая схема в АЦП и она описана далее. Полный умножающийся ЦАП с разрешением 2-b с усилением 2 требует шести эквивалентных конденсаторов, и он способен создавать 5 уровней ЦАП. Один способ увеличить полосу пропускания с обратной связью и скорость такого умножающего ЦАП - увеличение коэффициента обратной связи. Чтобы сделать это без изменения уровня усиления, можно удалить 2 конденсатора выборки, и умножающий ЦАП сможет выбирать одновременно и выборочные и интегрирующие конденсаторы[19]. Рис. 7(а) показывает схему полученного умножающего ЦАП. Он состоит из операционного усилителя, четырех эквивалентных конденсаторов и нескольких переключателей. Рис. 7(b) показывает временную диаграмму тактовых сигналов. Два основных такта ф1 и ф2 не наложены друг на друга. Для уменьшения ошибки перехода sample-to-hold также используются два дополнительных такта ф1’ и ф1”. В то время как ф1, ф1’ и ф1” подняты, входы операционного усилителя соединены с друг другом и выводом bias 6, входы SHA соединены с конденсатором выборки Сs и интегрирующим конденсатором С1. Когда ф1” опущен, входы операционного усилителя отсоединены от вывода bias 6, но остаются соединены друг с другом пока не опущен ф1’. Пока поднят ф2, интегрирующие конденсаторы подключены к операционному усилителю и конденсаторы выборки подключены друг к другу, положительный сигнал или отрицательный сигнал - зависит от состояния цифровых входов X-Z. Результирующий выход состоит из двух частей: одна является результатом прямой связи интегрирующих конденсаторов, а другая - зависимостью между интегрирующими конденсаторами и конденсаторами выборки. Так как только вторая часть является зависимостью, прямая связь сокращает эффект несоответствия конденсаторов на межкаскадном усилении. Это важно, потому что точность межкаскадного усиления 2 определяет линейность АЦП. Для минимизации ошибок усиления без обрезки, полностью дифференциальный массив конденсаторов с окружающими фиктивными конденсаторами используется в умножающем ЦАП.

Перейти на страницу: 1 2 3

Интересное из раздела

Преобразователь двоичного кода
Логические элементы (узлы) предназначены для выполнения различных логических (функциональных) операций над дискретными сигналами при двоичном коде их предст ...

Обзор современных систем спутниковой навигации
спутниковая навигационная глобальное позиционирование На сегодняшний день в мире существует несколько навигационных систем, использующих искусственные спутни ...

Ошибки позиционирования GPS-приемников в условиях полярных геомагнитных возмущений
Определение своего положения с помощью GPS навигатора, отдельного прибора, или устройства, встроенного в карманный компьютер или сотовый тел ...