Разделы сайта

Цифровые фильтры с конечной импульсной характеристикой (КИХ-фильтры)

цифровой фильтр процессор

Термином цифровой фильтр называют аппаратную или программную реализацию математического алгоритма, входом которого является цифровой сигнал, а выходом - другой цифровой сигнал, форма которого и амплитудная и фазовая характеристики сильно модифицированы. Во многих приложениях цифровые фильтры предпочтительнее аналоговых, поскольку они позволяют более точно воплотить амплитудные и фазовые спецификации. Кроме того, для цифровых фильтров нехарактерно присущее аналоговым фильтрам изменение характеристик в зависимости от температуры и напряжения.

Цифровой фильтр можно представить некоторым функциональным блоком, на вход которого поступает входной сигнал x(n) в виде последовательности числовых отсчетов, а с выхода снимаются числовые отсчеты выходного сигнала y(n).

Порядок расчета цифрового фильтра включает четыре основных этапа:

. Определение требуемых свойств фильтра. На данном этапе задается тип фильтра (ФНЧ, ФВЧ), нужная амплитудная или фазовая характеристика и разрешенные допуски, частота дискретизации и длина слов, которыми будут представлены входные данные.

. Вычисление коэффициентов. На этом этапе определяются коэффициенты передаточной функции H(z) , которая удовлетворяет заданным свойствам фильтра.

. Выбор структуры. Данный этап включает преобразование передаточной функции, полученной на предыдущем этапе, в подходящую фильтрующую структуру.

. Проверка моделированием, удовлетворяет ли полученный фильтр заданным требованиям.

Для того чтобы реализовать цифровой фильтр, необходимо знать его частотную характеристику, передаточную функцию, а для фильтров с конечной импульсной характеристикой достаточно знания отсчетов импульсной характеристики h(n), так как каждый отсчет выходного сигнала может быть вычислен как результат свертки входного сигнала с импульсной характеристикой:

где N - порядок фильтра (длина импульсной характеристики).

Желательно иметь минимальное N, при котором еще удовлетворяются требования к частотной характеристике фильтра. Тогда для реализации фильтра потребуется меньшая вычислительная мощность, т.е. будут меньше затраты времени и памяти.

Существует два основных вида цифровых фильтров: фильтры с конечной импульсной характеристикой (КИХ-фильтры) и с бесконечной импульсной характеристикой (БИХ-фильтры).

Цифровые КИХ-фильтры обладают рядом достоинств по сравнению с цифровыми фильтрами с бесконечной импульсной характеристикой (БИХ-фильтры). Они всегда устойчивы, менее чувствительны к точности представления числовых параметров фильтра и, главное, могут быть спроектированы таким образом, что их фазочастотная характеристика будет строго линейной, что обычно бывает желательно, а иногда необходимо. Недостатком КИХ-фильтров является то, что для получения частотных характеристик с крутыми перепадами между областями пропускания и задерживания требуются фильтры высоких порядков, т.е. с длинной импульсной характеристикой.

Рассмотрим основные характеристики КИХ-фильтров.

Амплитудно-частотная характеристика КИХ-фильтра часто задается в виде схемы допусков. Такая схема для фильтра нижних частот показана на рисунке. Подобную схему можно получить и для других частотно-избирательных фильтров.

Основные параметры:

дp - отклонение в полосе пропускания (или неравномерность);

дs - отклонение в полосе подавления;- граничная частота полосы пропускания;- граничная частота полосы подавления;- частота дискретизации.

На практике удобнее выражать дp и дs в децибелах. Расстояние между fs и fp равно ширине полосы перехода фильтра. Другой важный параметр - длина фильтра N , которая определяет число коэффициентов фильтра. В большинстве случаев указанные параметры полностью определяют частотную характеристику КИХ-фильтра.

Перейти на страницу: 1 2

Интересное из раздела

Расчет характеристик сигналов и каналов связи
На современном этапе развития перед железнодорожным транспортом стоят задачи по увеличению пропускной и провозной способности, грузовых и пассажирск ...

Проект макета на основе PIC контроллера
Сегодняшний день развития вычислительной техники характеризуется бурным развитием сетевых технологий. При этом, основной упор делается на технологии, позволяющи ...

Проектирование зеркальных антенн для индивидуального приема спутниковых программ
Наибольший интерес в настоящее время представляет прием телевидения в диапазоне 11…12 ГГц, для которого наиболее применимы параболические антенны, так как п ...